
Measurement	of	exRNA:	Quantitative	
Studies	of	Small	RNA-seq

David	J.	Galas
Pacific	Northwest	Research	Institute

Seattle,	WA

CHI	Molecular	Medicine	TriConference
9	March,	San	Francisco	



Acknowledgments

Alton Etheridge, Galas lab, PNDRI
Kai Wang, ISB

Muneesh Tewari lab, U of Mich.
David Erle lab, UCSF
Louise Laurent lab, UCSD

2

Funding:

NIH	ERCC
Portal:			www.exrna.org



Small	RNA-Seq
• Currently	the	most	powerful	method	for	
characterizing	sRNA populations,	

• It	plays	an	important	role	in	many	discovery	
programs,	including	the	NIH	Common	Fund	ERCC	
consortium,	however…

• There	are	significant	problems,	prominent	among	
them	is	sequence-specific	bias

• Our	Goals:		
– To	understand the	technology	in	detail
– To	modify	protocols	and	increase	its	reliability	and	power
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The	RNA-seq Bias	problem
• Recent	studies	have	identified	RNA-seq library	
construction	biases	as	a	significant	problem.

• Up	to	several	hundred-fold		differences	in	miRNA	read	
levels	between	different	protocols	have	been	reported.

• Critical	objectives	are	to:
– Characterize	the	biases

• Quantitate	– exactly	how	bad	is	it?
• Characterize	noise	and	reproducability)

– Understand	the	source	of	biases,	and	if	possible
– Try	to	find	a	correction	method

• Our	focus	here	is	on	small	RNAs	– specifically	exRNA
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Sources	of	bias	in	RNA-seq Experiments

Sample	Acquisition	
and	Handling

RNA	isolation	and	
purification

Seq.	Library	
preparation

Sequence	data	
acquisition

Data	analysis
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Circulating RNA
• There	is	wide	range	of	extracellular	RNA	molecules	in	the	blood	(e.g

Wang	et	al.,	Plos One,	2010)	some	for	cell-cell	communication	

• exRNA is	found	in	at	least	12 different	body	fluids	(Weber	et	al.,	2011)

• exRNAs detected	include:		mRNA,	rRNA,	tRNA,	lncRNA,	Y-RNA,	
snoRNA,	pi-RNA	and	miRNA etc…

• They	can	be	taken	up	by	other	cells	and	change	gene	expression.

• Recent	discovery:		non-human	RNA	(microbial	&	others)	is	found	
in	the	blood	at	significant	levels	(Wang	et	al,	2012)
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Some	reference	to	our	work:
• Wang,	K.,	Zhang,	S.,	Weber,	J.,	Baxter,	D.,	and	Galas,	D.J.	“Mammalian	cells	in	culture	actively	export	
specific	microRNAs,”	Nucleic	Acids	Research,	38(20):	7248-7259	(2010).

• Weber,	J.A.,	Baxter,	D.H.,	Zhang,	S.,	Huang,	D.Y.,	Huang,	K.H.,	Lee,	M.,	Galas,	D.J.,	and	Wang,	K.,	“The	
MicroRNA	Spectrum	in	12	Body	Fluids”,	Clinical	Chemistry,	56:	1733-1741	(2010).

• Wang,	K.,	Li,	H.,	Yuan,	Y.,	Etheridge,	A.,	Huang,	D.,	Wilmes,	P.,	and	Galas,	D.J.,	“The	Complex	Exogenous	
RNA	Spectra	in	Human	Plasma:	an	Interface	with	Human	Gut	Microbiome?”,	PLOS	ONE,	7(12):e51009	
(2012).



Vickers	et	al.	(2015)
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Some	RNA	in	the	Zoo

Notable	RNAs
miRNA
tRNA derived
snoRNA
piRNA
vtRNA



Our	Approach
• Use	synthetic	miRNAs to	form	specific,	defined	populations	of	

RNA	to	characterize	bias		quantitatively
• Examine	sequence	effects,	reaction	differences	etc..
• Differing	ligation	reaction	rates	are	the	primary	culprits	(first	

shown	by	Tom	Tuschl’s lab)

Note that	even	if	the	reaction	rates	for	ligation	are	different,	
pushing	the	reactions	to	completion	eliminates	bias
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Illustration	of	Ligation	yields	for	5	oligoRNAs w/	differing	rates	
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Degenerate	base	adaptors

RNA-Seq Results	for	equimolar mix	of	286	synthetic	miRNAs



Distribution	of	read	numbers	for	each	end	(TS)
(approximately	log	normal)
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RNA-Seq on	an	Equimolar mix		of	286	Synthetic	miRs
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Single	libraries

degenerate	end	base	adaptors

First	suggestion	of	degenerate	base	ends	was	from	Robb’s	group	(Zhuang et	al.,	NAR,	2012)



Read	distributions	for	equimolar mix	of	286	synthetic	miRNAs
Three	replicates	of	three	protocols,	four	RNA	input	levels

4N	- Degenerate	base	adaptor	ends TS	- Fixed	end	adaptors

Two	Protocols	and	different	RNA	input	levels	(36	libraries)
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Comparing	protocols	

≈	3.5nM/miR

2-fold	around	geometric	mean,
but	with	long	tails 14



Equimolar 286	Synthetic	miRs
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Sequence	Specificity	&	Variation

• There	is	indeed	significant	sequence	
specificity

• There	is	also	significant	variation	for	all	miRs
• The	variation,	however,	is	not	the	same	for	
different	miRs

• The	sequence	specificity	of	read	level	and	
sequence	specificity	of	variation	appears	
unrelated
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Replicates	of	286	synthetic	miRs at	different	input	levels	(RPM)

Protocol	4N-H

Equimolar
3511
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Stnd.	Dev.	/	Mean	as	a	Function	of	the	Mean	(4N)
286	Synthetic	miRs,	RPM	(	6	replicates,	dilutions)

Ave.	=	15%

18
Mean	Read	level	(RPM)

Variation	is	independent	
of	mean	read	level



ρ =
2 (rE − rD )

2

rE + rD
Measure,	ρ,	 is	average	normalized	difference	

Reproduceability Error

4N-protcol
TS-protocol

ρ
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Effect	of	PEG	and	Adaptor	Conc.	on	Ligations	&	Libraries
driving	the	reaction	forward

Libraries

Ligation

%
	Li
ga
te
d

Effect	on	width	
of	read	

distribution

PEG Adaptor

Optimization
Adjusting	these	two	parameters:
• To	increase	miR reads	relative	to	adaptor	dimers
• To	decrease	the	bias	(drive	reaction)	
• Protocol	optimized	for	plasma	will	be	available	on	

the	NIH	consortium	Portal:	www.exrna.org



Hi	PEG/Hi	adapter

hsa-miR-501-3p hsa-miR-629-5p hsa-mir-3929 hsa-miR-455-3p 

hsa-miR-411-5p hsa-miR-500a-3p hsa-miR-378e hsa-miR-409-3p 

hsa-miR-500a-5p hsa-miR-615-3p others

Hi	PEG/Lo	adapter

hsa-miR-501-3p hsa-miR-629-5p hsa-miR-500a-3p hsa-mir-3929 

hsa-miR-502-3p hsa-miR-185-3p hsa-miR-532-5p hsa-miR-378e

hsa-miR-485-5p hsa-miR-148a-5p others

Lo	PEG/Hi	adapter

hsa-miR-501-3p hsa-miR-500a-3p hsa-miR-629-5p hsa-miR-502-3p 

hsa-miR-485-5p hsa-mir-3929 hsa-miR-92b-3p hsa-miR-7706 

hsa-miR-589-5p hsa-miR-615-3p others

Lo	PEG/Lo	adapter

hsa-miR-501-3p hsa-miR-629-5p hsa-miR-500a-3p hsa-miR-485-5p 

hsa-miR-502-3p hsa-miR-378a-3p hsa-miR-589-5p hsa-miR-584-5p 

hsa-miR-532-5p hsa-miR-483-5p others

73%

87% 78%

79%

Synthetic libraries, 4N protocol
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Hi	PEG/Hi	adapter

hsa-miR-92a-3p hsa-miR-486-5p hsa-miR-423-5p hsa-miR-451a

hsa-miR-21-5p hsa-miR-126-3p hsa-miR-22-3p hsa-miR-23a-3p

hsa-miR-320a hsa-miR-320b others

Hi	PEG/Lo	adapter

hsa-miR-92a-3p hsa-miR-486-5p hsa-miR-423-5p hsa-miR-21-5p 
hsa-miR-451a hsa-miR-320a hsa-miR-320b hsa-miR-23a-3p

hsa-miR-26a-5p hsa-miR-22-3p others

Lo	PEG/Hi	adapter

hsa-miR-92a-3p hsa-miR-486-5p hsa-miR-423-5p hsa-miR-21-5p 

hsa-miR-22-3p hsa-miR-26a-5p hsa-miR-126-3p hsa-miR-23a-3p

hsa-miR-451a hsa-let-7a-5p others

Lo	PEG/Lo	adapter

hsa-miR-92a-3p hsa-miR-423-5p hsa-miR-486-5p hsa-miR-26a-5p

hsa-miR-22-3p hsa-miR-23a-3p hsa-miR-21-5p hsa-miR-10b-5p

hsa-miR-320a hsa-miR-320b others

47% 39%

32%
26%

Plasma libraries, 4N protocol
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BioO A BioO B Erle A Erle B Galas A Galas B

Bioo A 1 0.99 0.38 0.38 0.37 0.38

Bioo B 1 0.40 0.40 0.39 0.40

Erle A 1 1.00 0.45 0.47

Erle B 1 0.45 0.47

Galas A 1 0.99

Galas B 1

miRxplore (962 synthetic miRNAs library correlations

Summary
• All libraries made with 4N adapters
• Correlation between replicates is good, 

correlation between protocols is not.
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Hypothesis:	sequence-specific	bias

• The	ligation	step	seems	to	be	the	critical	one	
for	small	RNA	bias	(based	on	several	studies)

• Thus	we	might	guess	that	the	end	sequences	
of	the	RNA	are	the	most	important.

• Characterizing	the	bias	for	specific	end	
sequences	might	be	able	to	provide	a	
correction	factor	for	each	protocol
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What	causes	the	sequence-specific	bias?
Single	base	effect	in	miR’s

Fold	differences	for	13	pairs	of	miRNAs among	the	286	with	single	base	differences
Each	point	is	an	average	from	12	libraries	(3	replicates	at	4	RNA	input	levels)

4

miRNA pair	#

Fold	difference

2
Range	for	4N
protocols:	4-fold
(vs ~200-fold)
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miRNA	Name Sequence
hsa-miR-100-5p AACCCGTAGATCCGAACTTGTG
hsa-miR-99a-5p AACCCGTAGATCCGATCTTGTG
hsa-miR-501-3p AATGCACCCGGGCAAGGATTCT
hsa-miR-502-3p AATGCACCTGGGCAAGGATTCA
hsa-miR-378b ACTGGACTTGGAGGCAGAA
hsa-miR-378d ACTGGACTTGGAGTCAGAAA
hsa-miR-107 AGCAGCATTGTACAGGGCTATCA
hsa-miR-103a-3p AGCAGCATTGTACAGGGCTATGA
hsa-miR-23b-3p ATCACATTGCCAGGGATTACC
hsa-miR-23a-3p ATCACATTGCCAGGGATTTCC
hsa-miR-20b-5p CAAAGTGCTCATAGTGCAGGTAG
hsa-miR-17-5p CAAAGTGCTTACAGTGCAGGTAG
hsa-miR-301a-3p CAGTGCAATAGTATTGTCAAAGC
hsa-miR-301b CAGTGCAATGATATTGTCAAAGC
hsa-miR-130b-3p CAGTGCAATGATGAAAGGGCAT
hsa-miR-130a-3p CAGTGCAATGTTAAAAGGGCAT
hsa-miR-18a-5p TAAGGTGCATCTAGTGCAGATAG
hsa-miR-18b-5p TAAGGTGCATCTAGTGCAGTTAG
hsa-miR-10b-5p TACCCTGTAGAACCGAATTTGTG
hsa-miR-10a-5p TACCCTGTAGATCCGAATTTGTG
hsa-miR-148a-3p TCAGTGCACTACAGAACTTTGT
hsa-miR-148b-3p TCAGTGCATCACAGAACTTTGT
hsa-miR-19b-3p TGTGCAAATCCATGCAAAACTGA
hsa-miR-19a-3p TGTGCAAATCTATGCAAAACTGA
hsa-miR-133b TTTGGTCCCCTTCAACCAGCTA
hsa-miR-133a-3p TTTGGTCCCCTTCAACCAGCTG

miR-501
miR-502 miR-133a

miR-133b

miR-148a
miR-148b

miR-20b
miR-17

miR-378d
miR-148b

miR-100
miR-99a

STD

58.1

0.86

0.80	



Experiments	with	Degenerate	base	RNA	populations

Library Sequence Number of 
OligoRN’s

L1 NNNNAUGGCUGACGUACGUNNNN 48≅65000

L2 NNNNUUCGUGCGAUCUAGGNNNN 48≅65000

L5 UUGNAUGNCUGNCGUNCGUNACG 45=1024

L6 UUGAAUGGCNNNNNUACGUGACG 45=1024

L7 NNNNGCUAGCGUUCAGGUCNNNN 48≅65000

L8 NNNNCAACCAUCGAGCUAANNNN 48≅65000

Some	Libraries	with	Degenerate	Bases
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Systematic	Approach	to	Bias
Ribo-oligonucleotide	Libraries	with	degenerate	bases

• A	range	of	synthetic	RNA	populations	with	fixed	and	
degenerate	bases	have	been	made	and	sequenced.	

• With	several	RNA-seq library	protocols
– Illumina True-seq,	NEB,	BioO and	our	4N	protocol

• In	the	course	of	this	work	we	discovered:
– How	to	assess	the	synthesis	bias	and	
– How	to	separate	out	the	sequence-specific	library	bias
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TS	15

TS	8

NEB	15

NEB	8

Wide	range	of	read	numbers	over	the	~65,000	Oligonucleotides
L1	core,		Protocols:	TS	15,	TS	8,	NEB	15,	NEB	8

TS	=	Illumina True	seq protocol
NEB	=	New	England	Biolab protocol
Number	=	number	of	PCR	cycles
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Oligo Number	ordered	by	Number	of	Reads	

>	4	orders	
of	magnitude

What	part	of	this	is	sequence	bias?
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Read	fraction	median	as	a	function	of	number	of	G’s,	n:

f(n)	≅ 0.0003	e 0.757	n

(L5)
:	H H protocol:	4N	

adaptorsTTGNATGNCTGNCGTNCGTNACG
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Internal	“RANDOM”	bases

TTGNATGNCTGNCGTNCGTNACG		

C	has	the	opposite	effect	of	G,	but
A	&	T	have	almost	no	effect
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Synthesis	bias
• In	principle	variations	could	be	due	to	any	combination	
of	Synthesis and	other	Sequence bias

• Can	we	distinguish	synthesis	bias	in	our	experimental	
libraries?		Hypothesis:

1. Context	is	not	important	in	synthesis	bias,	and	sequence-specific	
bias	is	mostly	context,	

2. the	fractional	composition	profile	of	reads	can	then	be	predicted	
from	insertion	bias

3. This	can	be	directly	tested	as	follows	
4. For	n degenerate	bases	there	are	n+1	quantities	predicted	by	a	

single	parameter,	so	a	total	of	4(n+1)	measured	quantities	and	4	
parameters	(base	content	measured,	base	synthesis	probability)

5. In	addition	there	are	4	other	measured	quantities,	the	base	
content	of	the	degenerate	bases
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Inference	of	synthesis	bias	results
Hypothesis: Composition	of	collective	degenerate	bases	doesn’t	matter.		

Sequence	bias	comes	from	order	“only”.

What	is		the	base	composition	profile	of	the	sequence	reads?		
We	can	measure	this!

Can	we	explain	the	profile	with	a	few	parameters?		YES		
(strong	fit	to	a	simple	model)

This	means	there	is	no	overall	context	effect	within	the	
reads.		What	are	the	parameters?			Equal	to	the	overall	base	
composition	of	the	reads	(tight	fit)!!

Then	there	is	no	selection	bias	of	reads	from	the	synthetic	
population	(sequencing	bias):	 Thus,													

Compositionseq =	Compositionsyn

This	implies	that	the	base	composition	is	equal	to	the	
synthetic	base	insertion	frequency	

We	can	then	directly	infer	the	composition	of	the	synthetic	
RNA	population	from	the	read	population

Sequence	specificity	is	caused	by	the	order	of	bases	among	
the	specific	composition	groups	of	oligos

Evidence	points	to:	
Synthesis	bias	as	source	of	
major	differences	in	
composition	of	degenerate	
bases



p (Probability	of	G	insertion)
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Measured	quantities
• For	L5	there	are	6	quantities	measured	for	G	(or	any	
other	base)	composition.			

• If	we	assume	the	independent	insertion	frequency	
model	there	is	then	one	parameter	to	fit	these	6	
quantities

• All these	equations	must	be	satisfied	simultaneously

f(G=0)=(1-p)5

f(G=1)=5p(1-p)4

f(G=2)=10p2(1-p)3

f(G=3)=10p3(1-p)2

f(G=4)=5p4(1-p)
f(G=5)=p5

The	measured	quantity,	which	is	the	
fractional	base	content	of	the	degenerate	
bases,		f(G)	should	be	equal	to	p
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L5:	Comparison	with	Data:	G
TTGNATGNCTGNCGTNCGTNACG

p	(Probability	of	G	insertion)
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Data	is	explained	by	an	insertion	rate	of	G’s	of		~	0.42,
and		 f(G),	the	fraction	of	degenerate	bases	that	are	G	=	~0.42
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L5:	Comparison	with	Data:	C

p (Probability	of	C	insertion)
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Data	is	explained	by	an	insertion	rate	of	C’s	of		0.15,	
and	f(G)=0.15 36



L5:	Fraction	of	reads	for	oligos with	specific	number	of	G’s
(simple	transform)

f(G=n)=B(5,n)pn(1-p)5-n

B(5,n)	=	binomial	coefficient

Fraction	G:	Composition	measured

That	f/B	is	a	straight	line	in	
this	semi-log	plot	confirms		
independent	insertion	model
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The	RNA	populations	synthesized

Library Sequence
L1 NNNNAUGGCUGACGUACGUNNNN

L2 NNNNUUCGUGCGAUCUAGGNNNN

L5 UUGNAUGNCUGNCGUNCGUNACG

L6 UUGAAUGGCNNNNNUACGUGACG

L7 NNNNGCUAGCGUUCAGGUCNNNN

L8 NNNNCAACCAUCGAGCUAANNNN

Library %	A %	C %	G %	T
L1 26 15 34 25
L2 27 15 33 25
L5 20 15 42 23
L6 22 16 39 23
L7 23 18 37 22
L8 23 17 41 19
Avg. 23.5 16.0 37.7 22.8

Base	content	in	the	degenerate	bases
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So	we	can	characterize	the	input	populations	in	detail	



• We have a good library protocol for exRNA analysis
• We can now quantitatively characterize large synthetic

RNA-populations to a high degree
• Large synthetic RNA populations are powerful tools for

dissecting sequence-specific bias.
• New computational approaches probing sequence

features that are the sources of bias detect patterns
• Goal is optimized protocols and bias correction to

improve quantitation of sRNAS-seq.
• Much more to be done. A work in progress!

Summary
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